Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Vet Res ; 54(1): 107, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978536

RESUMO

Mycoplasma bovis is responsible for various inflammatory diseases in cattle. The prevention and control of M. bovis are complicated by the absence of effective vaccines and the emergence of multidrug-resistant strains, resulting in substantial economic losses worldwide in the cattle industry. Lipoproteins, vital components of the Mycoplasmas cell membrane, are deemed potent antigens for eliciting immune responses in the host upon infection. However, the functions of lipoproteins in M. bovis remain underexplored due to their low sequence similarity with those of other bacteria and the scarcity of genetic manipulation tools for M. bovis. In this study, the lipoprotein LppA was identified in all examined M. bovis strains. Utilizing immunoelectron microscopy and Western blotting, it was observed that LppA localizes to the surface membrane. Recombinant LppA demonstrated dose-dependent adherence to the membrane of embryonic bovine lung (EBL) cells, and this adhesion was inhibited by anti-LppA serum. In vitro binding assays confirmed LppA's ability to associate with fibronectin, collagen IV, laminin, vitronectin, plasminogen, and tPA, thereby facilitating the conversion of plasminogen to plasmin. Moreover, LppA was found to bind and enhance the accumulation of Annexin A2 (ANXA2) on the cell membrane. Disrupting LppA in M. bovis significantly diminished the bacterium's capacity to adhere to EBL cells, underscoring LppA's function as a bacterial adhesin. In conclusion, LppA emerges as a novel adhesion protein that interacts with multiple host extracellular matrix proteins and ANXA2, playing a crucial role in M. bovis's adherence to host cells and dissemination. These insights substantially deepen our comprehension of the molecular pathogenesis of M. bovis.


Assuntos
Anexina A2 , Doenças dos Bovinos , Infecções por Mycoplasma , Mycoplasma bovis , Animais , Bovinos , Mycoplasma bovis/fisiologia , Aderência Bacteriana/fisiologia , Plasminogênio/metabolismo , Anexina A2/metabolismo , Lipoproteínas/genética , Matriz Extracelular , Infecções por Mycoplasma/veterinária , Infecções por Mycoplasma/microbiologia , Doenças dos Bovinos/microbiologia
2.
Front Immunol ; 13: 1016641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341375

RESUMO

Bovine mycoplasmosis is an important infectious disease of cattle caused by Mycoplasma bovis (M. bovis) which poses a serious threat to the breeding industry. Adhesin is involved in the initial process of M. bovis colonization, which is closely related to the infection, cell invasion, immune escape and virulence of this pathogenic microorganism. For the reason that M. bovis lacks a cell wall, its adhesin is predominantly located on the surface of the cell membrane. The adhesins of M. bovis are usually identified by adhesion and adhesion inhibition analysis, and more than 10 adhesins have been identified so far. These adhesins primarily bind to plasminogen, fibronectin, heparin and amyloid precursor-like protein-2 of host cells. This review aims to concisely summarize the current knowledge regarding the adhesins of M. bovis and their target proteins of the host cell. Additionally, the biological characteristics of the adhesin will be briefly analyzed.


Assuntos
Doenças dos Bovinos , Infecções por Mycoplasma , Mycoplasma bovis , Bovinos , Animais , Mycoplasma bovis/fisiologia , Adesinas Bacterianas/metabolismo , Plasminogênio/metabolismo
3.
PLoS One ; 17(1): e0261893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35073323

RESUMO

Combating the spread of antimicrobial resistance (AMR) among bacteria requires a new class of antimicrobials, which desirably have a narrow spectrum because of their low propensity for the spread of AMR. Antimicrobial peptides (AMPs), which target the bacterial cell membrane, are promising seeds for novel antimicrobials because the cell membrane is essential for all cells. Previously, we reported the antimicrobial and haemolytic effects of a natural AMP, magainin 2 (Mag2), isolated from the skin of Xenopus laevis (the African clawed frog), four types of synthesised Mag2 derivatives, and three types of rationally designed AMPs on gram-positive and gram-negative bacteria. To identify novel antimicrobial seeds, we evaluated the effect of AMPs on Mycoplasma pneumoniae, which also exhibits AMR. We also evaluated the antimicrobial effects of an AMP, NK2A, which has been reported to have antimicrobial effects on Mycoplasma bovis, in addition to Mag2 and previously synthesised seven AMPs, on four strains of M. pneumoniae using colorimetric, biofilm, and killing assays. We found that three synthesised AMPs, namely 17base-Ac6c, 17base-Hybrid, and Block, had anti-M. pneumoniae (anti-Mp) effect at 8-30 µM, whereas others, including NK2A, did not have any such effect. For the further analysis, the membrane disruption activities of AMPs were measured by propidium iodide (PI) uptake assays, which suggested the direct interaction of AMPs to the cell membrane basically following the colorimetric, biofilm, and killing assay results. PI uptake assay, however, also showed the NK2A strong interaction to cell membrane, indicating unknown anti-Mp determinant factors related to the peptide sequences. Finally, we conclude that anti-Mp effect was not simply determined by the membrane disruption activities of AMPs, but also that the sequence of AMPs were important for killing of M. pneumoniae. These findings would be helpful for the development of AMPs for M. pneumoniae.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Desenho de Fármacos , Magaininas , Mycoplasma pneumoniae/fisiologia , Proteínas de Xenopus , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Magaininas/síntese química , Magaininas/química , Magaininas/farmacologia , Mycoplasma bovis/fisiologia , Proteínas de Xenopus/síntese química , Proteínas de Xenopus/química , Proteínas de Xenopus/farmacologia , Xenopus laevis
4.
Vet Res ; 52(1): 130, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649594

RESUMO

Mycoplasma species are the smallest prokaryotes capable of self-replication. To investigate Mycoplasma induced autophagy in mammalian cells, Mycoplasma bovis (M. bovis) and bovine mammary epithelial cells (bMEC) were used in an in vitro infection model. Initially, intracellular M. bovis was enclosed within a membrane-like structure in bMEC, as viewed with transmission electron microscopy. In infected bMEC, increased LC3II was verified by Western blotting, RT-PCR and laser confocal microscopy, confirming autophagy at 1, 3 and 6 h post-infection (hpi), with a peak at 6 hpi. However, the M. bovis-induced autophagy flux was subsequently blocked. P62 degradation in infected bMEC was inhibited at 3, 6, 12 and 24 hpi, based on Western blotting and RT-PCR. Beclin1 expression decreased at 12 and 24 hpi. Furthermore, autophagosome maturation was subverted by M. bovis. Autophagosome acidification was inhibited by M. bovis infection, based on detection of mCherry-GFP-LC3 labeled autophagosomes; the decreases in protein levels of Lamp-2a indicate that the lysosomes were impaired by infection. In contrast, activation of autophagy (with rapamycin or HBSS) overcame the M. bovis-induced blockade in phagosome maturation by increasing delivery of M. bovis to the lysosome, with a concurrent decrease in intracellular M. bovis replication. In conclusion, although M. bovis infection induced autophagy in bMEC, the autophagy flux was subsequently impaired by inhibiting autophagosome maturation. Therefore, we conclude that M. bovis subverted autophagy to promote its intracellular replication in bMEC. These findings are the impetus for future studies to further characterize interactions between M. bovis and mammalian host cells.


Assuntos
Autofagia , Doenças Mamárias/veterinária , Doenças dos Bovinos/fisiopatologia , Células Epiteliais/fisiologia , Glândulas Mamárias Animais/fisiopatologia , Mycoplasma bovis/fisiologia , Animais , Doenças Mamárias/microbiologia , Doenças Mamárias/fisiopatologia , Bovinos , Doenças dos Bovinos/microbiologia , Feminino , Glândulas Mamárias Animais/microbiologia
5.
Vet Res ; 52(1): 58, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863386

RESUMO

Mycoplasma bovis (M. bovis) is a significant worldwide pathogen of cattle. Neutrophils have an important role in the innate immune response during infection with M. bovis. However, even though neutrophils accumulate in M. bovis infection, the interaction of M. bovis and neutrophils has not been fully elucidated. We attempted to elucidate the innate immune response of neutrophils stimulated with M. bovis and evaluate the transcriptome and functional analysis of bovine neutrophils stimulated with M. bovis. Proinflammatory cytokines, such as inducible nitric oxide (iNOS), which was the most increased gene in transcriptome analysis, were increased in quantitative polymerase chain reaction analysis of bovine neutrophils stimulated with live or heat-killed M. bovis. Nitric oxide and intracellular reactive oxygen species production of neutrophils stimulated with M. bovis was significantly increased. Neutrophils stimulated with M. bovis showed an increased ratio of nonapoptotic cell death compared to unstimulated controls. We demonstrated that neutrophil extracellular traps (NETs) formation was not recognized in neutrophils stimulated with live M. bovis. However, heat-killed M. bovis induced NETs formation. We also showed the interaction with M. bovis and bovine neutrophils regarding proinflammatory cytokine gene expression and functional expression related to NETs formation. Live and killed M. bovis induced innate immune responses in neutrophils and had the potential to induce NETs formation, but live M. bovis escaped NETs.


Assuntos
Doenças dos Bovinos/imunologia , Armadilhas Extracelulares/metabolismo , Expressão Gênica/imunologia , Imunidade Inata , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/fisiologia , Neutrófilos/imunologia , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Armadilhas Extracelulares/microbiologia , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia
6.
Front Immunol ; 12: 619362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33659004

RESUMO

Mycoplasma bovis causes important diseases and great losses on feedlots and dairy farms. However, there are only a few measures to control M. bovis-related diseases. As in other mycoplasma species, this is predominantly because the virulence related factors of this pathogen are largely unknown. Therefore, in this study, we aimed to identify novel virulence-related factors among the secreted proteins of M. bovis. Using bioinformatic tools to analyze its secreted proteins, we preliminarily predicted 39 secreted lipoproteins, and then selected 11 of them for confirmation based on SignalP scores >0.6 or SceP scores >0.8 and conserved domains. These 11 genes were cloned after gene modification based on the codon bias of Escherichia coli and expressed. Mouse antiserum to each recombinant protein was developed. A western blotting assay with these antisera confirmed that MbovP280 and MbovP475 are strongly expressed and secreted proteins, but only MbovP280 significantly reduced the viability of bovine macrophages (BoMac). In further experiments, MbovP280 induced the apoptosis of BoMac treated with both live M. bovis and MbovP280 protein. The conserved coiled-coil domain of MbovP280 at amino acids 210-269 is essential for its induction of apoptosis. Further, immunoprecipitation, mass spectrometry, and coimmunoprecipitation assays identified the anti-apoptosis regulator αB-crystallin (CRYAB) as an MbovP280-binding ligand. An αß-crystallin knockout cell line BoMac-cryab-, Mbov0280-knockout M. bovis strain T9.297, and its complemented M. bovis strain CT9.297 were constructed and the apoptosis of BoMac-cryab- induced by these strains was compared. The results confirmed that CRYAB is critical for MbovP280 function as an apoptosis inducer in BoMac. In conclusion, in this study, we identified MbovP280 as a novel secreted protein of M. bovis that induces the apoptosis of BoMac via its coiled-coil domain and cellular ligand CRYAB. These findings extend our understanding of the virulence mechanism of mycoplasmal species.


Assuntos
Apoptose , Proteínas de Bactérias/metabolismo , Macrófagos/metabolismo , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/fisiologia , Animais , Apoptose/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/farmacologia , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Genoma Bacteriano , Humanos , Ligantes , Macrófagos/imunologia , Camundongos , Modelos Biológicos , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/metabolismo
7.
Vet Microbiol ; 253: 108956, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33373880

RESUMO

Mycoplasma bovis causes chronic arthritis in cattle, accompanied by a severe inflammatory reaction of the joints. Recent studies demonstrated that M. bovis can invade bovine non-phagocytic cells, but the mechanism of M. bovis internalization in the cells remains unclear. In this study, we examined the mechanism by which M. bovis invades synovial cells, including the pathway of cell invasion. Using fluorescence and electron microscopy, multiple M. bovis were observed to adhere to and be internalized in cultured bovine synovial cells. The number of M. bovis colocalized with clathrin heavy chain (CLTC) per cell was significantly higher than the number of M. bovis colocalized with caveolin-1 (Cav-1). The internalized ratio of M. bovis in synovial cells treated with clathrin-dependent endocytosis inhibitor and small interfering RNA (siRNA) against CLTC was significantly lower than that in control cells. In contrast, the internalized ratio of M. bovis in synovial cells was unaffected by siRNA against Cav-1. These findings provide the first evidence that clathrin-dependent endocytosis is one of the major pathways by which M. bovis invades into synovial cells.


Assuntos
Artrite/veterinária , Clatrina/metabolismo , Endocitose , Mycoplasma bovis/fisiologia , Sinoviócitos/microbiologia , Adesinas Bacterianas , Animais , Artrite/microbiologia , Bovinos , Células Cultivadas , RNA Interferente Pequeno
8.
J Dairy Sci ; 103(11): 10429-10445, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32921448

RESUMO

Mycoplasma bovis is an important cause of bovine mastitis in China and worldwide. We hypothesized that M. bovis damages bovine mammary epithelial cells (bMEC), with the degree of damage varying among field isolates. Our objective was to evaluate 2 novel sequence type (ST) field strains of M. bovis (ST172 and ST173) for their ability to induce oxidative stress, cytotoxicity, pathomorphological changes, and apoptosis in bMEC, as a model for pathogenesis of M. bovis-induced bovine mastitis. Cytotoxicity (as indicated by release of lactate dehydrogenase, LDH) from bMEC depended on multiplicity of infection (MOI), with a high MOI (1:1,000) being required to induce cytotoxicity. Morphological changes in bMEC, including shrinkage, loss of cell integrity, and heavy staining (hematoxylin and eosin) of cytoplasm were apparent 24 h after infection with ST172 or ST173 M. bovis, with more severe changes being induced by the latter strain. Adhesion and invasion assays both had curvilinear patterns, peaking 12 h after infection with MOI of 1:1,000. Both production of reactive oxygen species (ROS) and proportion of apoptotic cells increased with time after infection. Increased Bax/Bcl-2 ratios and activation of caspase-3 implied involvement of mitochondria-dependent pathways of apoptosis. Furthermore, intracellular ROS generation, apoptosis, and cleaved caspase-3 were mitigated by N-acetyl-l-cysteine, a ROS scavenger. Both interleukin (IL)-1ß and IL-6 were significantly upregulated by ST172 and ST173 M. bovis, with little change in expression of tumor necrosis factor-α. One ST173 M. bovis isolate had the greatest cytotoxicity of all of our field isolates, with the highest LDH release, adhesion, invasion, ROS production, and apoptosis. In conclusion, our hypothesis was supported: M. bovis damaged bMEC by generating ROS and initiating a mitochondria-dependent pathway of apoptosis, with the degree of damage varying among field isolates. This study provided new knowledge regarding pathogenesis of M. bovis-induced bovine mastitis.


Assuntos
Apoptose , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Mycoplasma bovis/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Caspase 3/metabolismo , Bovinos , Técnicas de Cultura de Células/veterinária , China , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/metabolismo , Mastite Bovina/patologia , Mitocôndrias/metabolismo , Mycoplasma bovis/metabolismo , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo
9.
Prev Vet Med ; 182: 105106, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32810702

RESUMO

Mycoplasma bovis (M. bovis) is regarded as the most prevalent mycoplasma species causing bovine mastitis worldwide. This study was conducted with the objectives to: (1) estimate M. bovis prevalence in samples from clinical mastitis and bulk tank milk; (2) assess genetic diversity and population structure of isolates; and (3) determine antibiotic susceptibility of isolates to nine antimicrobials. Milk samples (n = 476), including 450 clinical mastitis and 26 bulk tank milk samples from 23 farms (each with >1000 lactating cows) in 10 provinces of China were collected between May 2018 and September 2019. M. bovis cultured from milk samples were analyzed by multi-locus sequence typing. Minimum inhibitory concentrations of all isolates to nine antimicrobials were determined. Differences in minimum inhibitory concentration values were assessed by Kruskal-Wallis test with Bonferroni correction. The positive proportions of M. bovis in clinical mastitis samples and bulk tank milk samples were 39/450 (8.7%) and 11/26 (42.3%), respectively. Based on multi-locus sequence typing, the 50 isolates were identified as three sequence types, including sequence type 10 and two novel sequence types (newly registered as sequence type 172 and sequence type 173). The most prevalent type, sequence type 172 (31/50, 62.0%), had allelic profile 4, 3, 2, 3, 5, 7, 4. In addition, sequence type 10 with allelic profile 4, 3, 2, 3, 5, 3, 4 had a mid-range prevalence (11/50, 22.0%), whereas sequence type 173 with allelic profile 10, 3, 6, 13, 21, 6, 10 was the least prevalent (8/50, 16.0%). Both sequence type 10 and sequence type 172 were clustered in Clonal Complex 3, with isolates from the USA. M. bovis isolates in this study uniformly had low level minimum inhibitory concentrations to enrofloxacin and tiamulin. Overall variances among isolates were significant (Kruskal-Wallis test) for clindamycin (P = 0.006), erythromycin (P = 0.012) and tylosin (P =0.004). Relative to the sequence type 10 group, there were higher minimum inhibitory concentrations levels for the sequence type 173 group (H = -19.795, P = 0.003, for clindamycin; H = -19.574, P = 0.003, for erythromycin; and H = -18.881, P = 0.003, for tylosin) by post-hoc comparisons using pairwise comparisons of mean ranks following Kruskal-Wallis test with Bonferroni correction. Hence, increasing antimicrobial resistance may have contributed to emergence of novel sequence types. These data provided a baseline for elucidating genetic diversity and antibiotic susceptibility profiles of M. bovis in the main dairy-farming provinces in China.


Assuntos
Antibacterianos/farmacologia , Mastite Bovina/epidemiologia , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/fisiologia , Animais , Bovinos , China/epidemiologia , Feminino , Mastite Bovina/microbiologia , Testes de Sensibilidade Microbiana/veterinária , Tipagem de Sequências Multilocus/veterinária , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/efeitos dos fármacos , Prevalência
10.
BMC Vet Res ; 16(1): 251, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32690006

RESUMO

BACKGROUND: Mycoplasma bovis is an important pathogen for the cattle industry worldwide causing significant economic losses. Several transmission routes, including those related to reproduction, have been described. Indeed, the pathogen can colonize the female reproductive tract after artificial insemination (AI) with contaminated semen. Lactobacillus spp.-based probiotics have been used for vaginal dysbiosis treatment in women and cows although their role in controlling cervico-vaginal infections due to M. bovis is unknown. The objective of the present work is to assess the viability of M. bovis (PG45, NCTC 10131) in experimentally contaminated cervical mucus after the addition of Lactobacillus spp. at different concentrations as a competing agent and pH acidifier. RESULTS: The addition of probiotic at a concentration higher than 108 colony forming units (CFU/mL had a detrimental effect (P < 0.05) on mycoplasma viability in cervical mucus. This coincided with a significant LAB growth and an important decrease in pH from 8.4 to 5.6 (P < 0.05). However, after the addition of less concentrated probiotic, M. bovis survival was not affected and there was no significant LAB growth despite the drop of pH from 8.4 to 6.73 (P < 0.05). CONCLUSION: The addition of concentrations higher than 108 CFU/mL of Lactobacillus spp. negatively affects M. bovis viability in bovine cervical mucus under in vitro conditions. Although the effect observed on the pathogen viability seems to be related to the pH decrease after LAB proliferation in cervical mucus, further studies are necessary to elucidate if other factors are implicated. Nevertheless, the administration of Lactobacillus spp.-based probiotics might be used in the future to control M. bovis proliferation in the cervico-vaginal tract of cows.


Assuntos
Muco do Colo Uterino/microbiologia , Lactobacillus , Mycoplasma bovis/fisiologia , Animais , Bovinos , Muco do Colo Uterino/química , Feminino , Concentração de Íons de Hidrogênio , Probióticos
11.
Vet Res ; 51(1): 54, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299498

RESUMO

In herds with Mycoplasma bovis circulation, colostrum is often considered infectious. However, in contrast to milk, the presence of M. bovis in colostrum was not previously evidenced. In this survey, the presence of M. bovis DNA was determined with real-time PCR in 368 colostrum samples from 17 herds, recently infected with M. bovis. Only 1.9% of the samples tested positive, with 13 herds having no positive samples and an overall within-herd prevalence of 3.2% (SD: 4.9%; Range: 0-30.0%). These results show that in infected herds M. bovis DNA can be retrieved in colostrum. To what extend colostrum is infectious remains to be determined.


Assuntos
Doenças dos Bovinos/epidemiologia , Colostro/microbiologia , Infecções por Mycoplasma/epidemiologia , Mycoplasma bovis/fisiologia , Animais , Bélgica/epidemiologia , Bovinos , Doenças dos Bovinos/microbiologia , Infecções por Mycoplasma/microbiologia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real/veterinária
12.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32253247

RESUMO

The survival, replication, and virulence of mycoplasmas depend on their ability to capture and import host-derived nutrients using poorly characterized membrane proteins. Previous studies on the important bovine pathogen Mycoplasma bovis demonstrated that the amino-terminal end of an immunogenic 226-kDa (P226) protein, encoded by milA (the full-length product of which has a predicted molecular weight of 303 kDa), had lipase activity. The predicted sequence of MilA contains glycosaminoglycan binding motifs, as well as multiple copies of a domain of unknown function (DUF445) that is also found in apolipoproteins. We mutagenized the gene to facilitate expression of a series of regions spanning the gene in Escherichia coli Using monospecific antibodies against these recombinant proteins, we showed that MilA was proteolytically processed into 226-kDa and 50-kDa fragments that were both partitioned into the detergent phase by Triton X-114 phase fractionation. Trypsin treatment of intact cells showed that P226 was surface exposed. In vitro, the recombinant regions of MilA bound to 1-anilinonaphthalene-8-sulfonic acid and to a variety of lipids. The MilA fragments were also shown to bind heparin. Antibody against the carboxyl-terminal fragment inhibited the growth of M. bovisin vitro This carboxyl end also bound and hydrolyzed ATP, suggestive of a potential role as an autotransporter. Our studies have demonstrated that DUF445 has lipid binding activity and that MilA is a multifunctional protein that may play multiple roles in the pathogenesis of infection with M. bovis.


Assuntos
Glicosaminoglicanos/metabolismo , Lipase/metabolismo , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/fisiologia , Trifosfato de Adenosina , Animais , Antígenos de Bactérias , Proteínas de Bactérias/metabolismo , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Mapeamento Cromossômico , Biologia Computacional/métodos , Genoma Bacteriano , Proteínas de Membrana/imunologia , Infecções por Mycoplasma/imunologia , Ligação Proteica , Proteólise
13.
Mol Cell Probes ; 50: 101512, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31972225

RESUMO

Mycoplasma bovis (M. bovis) causes diseases such as arthritis, pneumonia, abortion, and mastitis, leading to great losses in the bovine dairy industries. RNA types such as messenger RNAs (mRNAs) and long non-coding RNAs (lncRNAs) play significant roles in regulating the immune responses triggered by bacteria. The expression profiles of mRNA and lncRNA as they occur in bovine mammary gland tissues infected with M. bovis are still not well understood. To illuminate this issue, transcription analysis of mRNA and LncRNAs were conducted on the mammary gland tissues belonging to Holstein cattle infected and not infected with M. bovis. The analysis revealed 1310 differentially expressed mRNAs and 57 differentially expressed lncRNAs in the bovine mammary gland tissues infected and not infected with M. bovis. In addition, 392 novel lncRNAs were detected, 19 of which were differentially expressed. Gene ontology analysis reveals that differentially expressed mRNAs and lncRNAs play significant roles in such vital biological pathways as metabolic pathways, T-cell receptor signaling, TGF-beta signaling, pathways in cancer, PI3K-Akt signaling, NF-kappa B signaling, mTOR signaling, and apoptosis, including in the immune response to cancer. Based on our literature review, this study is the first genome-wide lncRNA research conducted on bovine mammary gland tissues infected with M. bovis. Our results provide bovine mammary gland lncRNA and mRNA resources to understand their roles in the regulation of the immune response against the agent M. bovis in bovine mammary gland tissues.


Assuntos
Genoma , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/microbiologia , Mycoplasma bovis/fisiologia , RNA Longo não Codificante/genética , Animais , Bovinos , Cromossomos de Mamíferos/genética , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
14.
Prev Vet Med ; 166: 86-92, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30935510

RESUMO

Mycoplasma bovis infections cause disease and production losses in cattle worldwide. The long-term consequences are not well described despite being important for management decisions during and after disease outbreaks. We investigated the association between M. bovis antibody-positivity and undesired early departure (UED, i.e. death, euthanasia or slaughter) before first calving in a cohort of 636 heifers from 36 Danish dairy herds with and without a history of M. bovis-associated disease. The herds were visited 4 times at 3-month intervals and blood samples from young stock and milk samples from lactating cows were collected. Poisson regression was performed to examine the association with UED as outcome, logarithmic transformation of risk time as offset and herd as a random effect. Individual antibody measurements and group-level variables representing the infection level among young stock and cows, age and mortality variables were included in the model. The incidence rate ratio of UED increased by 1.23 times for every 10% increase in M. bovis young stock seroprevalence, while the effect of individual antibody level was modified by age and influenced UED less. In conclusion, UED in heifers was associated with M. bovis antibody-positivity in young stock and should be controlled in dairy herds to reduce losses.


Assuntos
Anticorpos Antibacterianos/sangue , Doenças dos Bovinos/mortalidade , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/fisiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Estudos de Coortes , Indústria de Laticínios , Dinamarca/epidemiologia , Feminino , Incidência , Infecções por Mycoplasma/microbiologia , Infecções por Mycoplasma/mortalidade , Prevalência , Estudos Soroepidemiológicos
15.
Res Vet Sci ; 124: 70-78, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30852357

RESUMO

Mycoplasma bovis is a common pathogenic microorganism of cattle and represents an important hazard on the cattle industry. Adherence to host cells is a significant component of mycoplasma-pathogenesis research. Fibronectin (Fn), an extracellular matrix protein, is a common host cell factor that can interact with the adhesions of pathogens. The aims of this study were to investigate the Fn-binding properties of M. bovis fructose-1,6-bisphosphate aldolase (FBA) and evaluate its role as a cell adhesion factor during mycoplasma colonization. The fba (MBOV_RS00435) gene of M. bovis was cloned and expressed, with the resulting recombinant protein used to prepare rabbit polyclonal antibodies. The purified recombinant FBA (rFBA) was shown to have fructose bisphosphate aldolase activity. Western blot indicated that FBA was an antigenically conserved protein in several M. bovis strains. Western blot combined with immunofluorescent assay (IFA) revealed that FBA was dual-localized to both cytoplasm and membrane in M. bovis. IFA showed that rFBA was able to adhere to embryonic bovine lung (EBL) cells. Meanwhile, an adhesion inhibition assay demonstrated that anti-rFBA antibodies could significantly block the adhesion of M. bovis to EBL cells. Moreover, a dose-dependent binding of rFBA to Fn was found by dot blotting and enzyme-linked immunosorbent assays. Together these results provided evidence that FBA is a surface-localized and antigenic protein of M. bovis, suggesting that it may function as a virulence determinant through interacting with host Fn.


Assuntos
Adesinas Bacterianas/metabolismo , Fibronectinas/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Mycoplasma bovis/fisiologia , Aderência Bacteriana , Ensaio de Imunoadsorção Enzimática/veterinária , Immunoblotting/veterinária , Ligação Proteica
16.
Res Vet Sci ; 123: 29-31, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30580233

RESUMO

Mycoplasma mastitis is a dairy herd health problem with growing concern in Japan. To complement the lack of epidemiological knowledge of the disease, we conducted estimation of herd-level prevalence and risk factor analysis for Mycoplasma bovis (M. bovis) mastitis using data collected from Tokachi region, one of the nation's largest milk producing area, in Hokkaido Prefecture in 2015. The herd-level prevalence was estimated at 3.8% (95% confidence interval (CI): 2.6%, 5.4%) across the region with municipality-specific prevalence ranging from 0% to 14.3%. In this study, identified risk factors for the presence of with M. bovis infection on farms were corporation-type farms and purchased cattle, after controlling for the herd size. Corporation-type farms may reflect higher frequencies of moving cows and fomites to and from other farms, which increases the risk of pathogen introduction. Purchased cattle was considered as one of the major pathways of the disease incursion, and this finding highlighted the importance of more stringent separation or quarantine protocols when introducing cattle from outside in Tokachi region. Due to the limited information available in this study and inherent nature of the study designs, these results should be interpreted with caution and further research is needed.


Assuntos
Doenças dos Bovinos/epidemiologia , Indústria de Laticínios/métodos , Mastite Bovina/epidemiologia , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/fisiologia , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Feminino , Japão/epidemiologia , Mastite Bovina/microbiologia , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/microbiologia , Prevalência , Fatores de Risco
17.
Microb Pathog ; 124: 230-237, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30142464

RESUMO

Mycoplasma bovis is an extremely small cell wall-deficient pathogenic bacterium in the genus Mycoplasma that causes serious economic losses to the cattle industry worldwide. Fructose-1,6-bisphosphate aldolase (FBA), a key enzyme in the glycolytic pathway, is a multifunctional protein in several pathogenic bacterial species, but its role in M. bovis remains unknown. Herein, the FBA gene of the M. bovis was amplified by PCR, and subcloned into the prokaryotic expression vector pET28a (+) to generate the pET28a-FBA plasmid for recombinant expression in Escherichia coli Transetta. Expression of the 34 kDa recombinant rMbFBA protein was confirmed by electrophoresis, and enzymatic activity assays based on conversion of NADH to NAD+ revealed Km and Vmax values of 48 µM and 43.8 µmoL/L/min, respectively. Rabbit anti-rMbFBA and anti-M. bovis serum were generated by inoculation with rMbFBA and M. bovis, and antigenicity and immunofluorescence assay demonstrated that FBA is an immunogenic protein expressed on the cell membrane in M. bovis cells. Enzyme-linked immunosorbent assays revealed equal distribution of FBA in the cell membrane and cytoplasm. Complement-dependent mycoplasmacidal assays showed that rabbit anti-rMbFBA serum killed 44.1% of M. bovis cells in the presence of complement. Binding and ELISA assays demonstrated that rMbFBA binds native bovine plasminogen and in a dose-dependent manner. Fluorescent microscopy revealed that pre-treatment with antibodies against rMbFBA decreased the adhesion of M. bovis to embryonic bovine lung (EBL) cells. Furthermore, adherence inhibition assays revealed 34.4% inhibition of M. bovis infection of EBL cells following treatment with rabbit anti-rMbFBA serum, suggesting rMbFBA participates in bacterial adhesion to EBL cells.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Frutose/metabolismo , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/enzimologia , Plasminogênio/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Animais , Aderência Bacteriana , Proteínas de Bactérias/genética , Bovinos , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/microbiologia , Frutose/química , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/metabolismo , Cinética , Pulmão/metabolismo , Pulmão/microbiologia , Infecções por Mycoplasma/metabolismo , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/química , Mycoplasma bovis/genética , Mycoplasma bovis/fisiologia , Plasmídeos/genética , Plasmídeos/metabolismo , Plasminogênio/química , Ligação Proteica
18.
BMC Res Notes ; 11(1): 216, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29609634

RESUMO

OBJECTIVES: Currently, there is no consensus protocols regarding the combination of glycerol (GLY), gelatin or foetal bovine serum (FBS) with dimethyl sulphoxide (DMSO) as cryoprotectants for Mycoplasma bovis in bovine milk samples. This study aimed to compare different cryopreservation compounds and storage temperatures for M. bovis. RESULTS: There were significant differences in the survival of M. bovis on different media. Differences were also observed between different storage conditions. All additives improved the survival of M. bovis in comparison to control (CON). The combination of GLY and DMSO was shown to be significantly different to CON with 57.1% (95% CI = 21.43-133.34) and 19.1% (95% CI = 11.73-60.27), respectively at week 16, and its use should be encouraged as a cryoprotectant for M. bovis at - 20 and - 80 °C. GEL/DMSO showed the highest survival rate for M. bovis with 57.14% (95% CI = 21.43-133.34) at 4 °C in comparison with CON 14.29% (95% CI = 9.60-50.39). FBS/DMSO showed the highest survival rate for the short-term preservation similarly to other additives. The evaluated cryopreservative compounds would improve survivability of M. bovis in milk for both transport and long-term storage. Hence, it is recommended to use the mentioned methods for routine transportation or storage purposes for suspicious M. bovis milk samples.


Assuntos
Crioprotetores/farmacologia , Congelamento , Leite , Mycoplasma bovis/efeitos dos fármacos , Animais , Bovinos , Criopreservação/métodos , Dimetil Sulfóxido/farmacologia , Glicerol/farmacologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Mycoplasma bovis/fisiologia , Fatores de Tempo
19.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311234

RESUMO

Mycoplasma bovis-induced immune suppression is a major obstacle faced by the host for controlling infections. M. bovis impairment of antigen-specific T-cell responses is achieved through inhibiting the proliferation of peripheral blood mononuclear cells (PBMCs). This impairment may contribute to the persistence of M. bovis infection in various sites, including lungs, and its systemic spread to various organs such as joints, with the underlying mechanisms remaining elusive. Here, we elucidated the role of the immune-inhibitory receptor programmed death 1 (PD-1) and its ligand (PD-L1) in M. bovis infection. Flow cytometry (FCM) analyses revealed an upregulation of PD-L1 expression on tracheal and lung epithelial cell lines after M. bovis infection. In addition, we found increased PD-L1 expression on purified lung lavage macrophages following M. bovis infection by FCM and determined its localization by immunofluorescence analysis comparing infected and control lung tissue sections. Moreover, M. bovis infection increased the expression of the PD-1 receptor on total PBMCs and in gated CD4+ and CD8+ T-cell subpopulations. We demonstrated that M. bovis infection induced a significant decrease in CD4+ PD-1INT and CD8+ PD-1INT subsets with intermediate PD-1 expression, which functioned as progenitor pools giving rise to CD4+ PD-1HIGH and CD8+ PD-1HIGH subsets with high PD-1 expression levels. We blocked PD-1 receptors on PBMCs using anti-PD-1 antibody at the beginning of infection, leading to a significant restoration of the proliferation of PBMCs. Taken together, our data indicate a significant involvement of the PD-1/PD-L1 inhibitory pathway during M. bovis infection and its associated immune exhaustion, culminating in impaired host immune responses.


Assuntos
Doenças dos Bovinos/imunologia , Proliferação de Células , Leucócitos Mononucleares/citologia , Infecções por Mycoplasma/veterinária , Mycoplasma bovis/fisiologia , Receptor de Morte Celular Programada 1/imunologia , Animais , Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/microbiologia , Interações Hospedeiro-Patógeno , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Pulmão/imunologia , Pulmão/microbiologia , Infecções por Mycoplasma/genética , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/microbiologia , Mycoplasma bovis/genética , Receptor de Morte Celular Programada 1/genética
20.
Vet Res ; 49(1): 2, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316971

RESUMO

Several studies suggest that synergisms between Mycoplasma bovis and other microorganisms might exacerbate disease outcome of bovine mycoplasmosis. Screening several bovine cell types to assess their potential use as in vitro infection models for M. bovis, it was observed that a widely used cell line of bovine macrophages (Bomac cells) is in fact persistently infected with bovine viral diarrhea virus (BVDV). The cell line was first cured of this virus allowing comparative studies between both cell lines. Subsequently, uptake and co-culture of two M. bovis strains of different clonal complexes with Bomac cells contaminated with BVDV and in BVDV-free Bomac cells were assessed. Additionally, cell viability, cytotoxicity and induction of apoptosis after infection with M. bovis were evaluated. No differences in the levels of uptake and growth in co-culture were observed between the two Bomac cell types and both M. bovis strains. Cytotoxicity was increased after infection of BVDV-free cells with one of the two strains, while apoptotic cell death was slightly induced by this strain in both cell lines. Overall, the presence or absence of BVDV in Bomac cells did not grossly change the parameters tested upon infection with M. bovis. Nevertheless, this cell model is very useful when studying viral co-infections with bacteria and could also be used for multiple co-infections. Considering the broad contamination of cell cultures with BVDV, careful screening for this virus should routinely be performed as its presence might be relevant depending on the molecular mechanisms being investigated.


Assuntos
Apoptose , Doença das Mucosas por Vírus da Diarreia Viral Bovina/virologia , Coinfecção/veterinária , Macrófagos/imunologia , Infecções por Mycoplasma/microbiologia , Animais , Bovinos , Linhagem Celular/microbiologia , Linhagem Celular/virologia , Coinfecção/microbiologia , Coinfecção/virologia , Vírus da Diarreia Viral Bovina/fisiologia , Macrófagos/microbiologia , Mycoplasma bovis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...